First, we helped Gogo migrate their on-premise data solutions to the cloud in order to collect and process a considerable amount of data from more than 20 sources. Not only did the migration to AWS cloud expand the data processing capacity needed for further data analytics solutions, but it also saved Gogo costs spent on licenses and the on-premise infrastructure. Next, we built a cloud-based unified data platform that collects and aggregates both structured (i.e. systems uptime, latency) and unstructured data (i.e. the number of concurrent Wi-Fi sessions and video views during a flight). For this purpose, our engineers made an end-to-end delivery pipeline: from the moment when the logs come from the equipment to the moment when they are entirely analyzed, processed, and stored in the data lake on AWS.
Further, in order to predict the antenna equipment failure and reduce the no-fault-found rate (NFF), we applied the data science models, namely Gaussian Mixture Model and Regression Analysis. We set up a data retrieving process from seriously degraded antennas and correlated it with weather conditions and the antenna construction.
We also provided Gogo C-level decision-makers with comprehensive reports on financial data (data consumption, purchases, data usage, etc.) and operational health (modem performance, WAP, Service Level Agreements, etc.). We are developing a reporting tool that allows identifying the users’ pain-points during the first fifteen seconds of the Internet connection. With the help of this data, we identified the point where a lot of passengers had difficulties while connecting to Gogo Wi-Fi.