Implementation: leveraging computer vision and deep learning models Implementation
At the start of this project, we received the first data samples and determined various factors and potential difficulties that affect image quality. These include sun glare on the windshield, lack of lighting, camera location and angles of rotation, etc. We prepared the guides with descriptions of how we will annotate each windshield and capture driver behavior. As a result, we developed a system that automatically detects whether a driver has fastened the seat belt or not. The detected violations are then sent to the dispatcher, who must confirm them. We used TensorFlow to train the model and pandas software for data analysis. The solution we developed performs at approximately 88% detection accuracy.
The next PoC focused on capturing distracted driving behavior, which divert attention away from driving, such as talking or texting on the phone, eating and drinking, talking to people in the vehicle, or smoking while driving. The system includes automatic Number Plate Recognition (ANPR) and general identification of vehicles based on Artificial Intelligence (AI) algorithms. The model we developed supports a real-time stream (30 FPS) that helps generate fines in real-time based on captured data and specific violations. Our solution provides a 91% person detection accuracy both at night and during the day.